

HBase Practice In China Mobile

Yechao Chen
China Mobile (Suzhou) Software Technology Co., Ltd.

China Mobile Suzhou Research Center

About China Mobile

1. China Mobile is the world’s biggest telecom companies in the world

2. 932 million customers

3. 727 million 4G customers

4. 172 million wireline broadband customers

5. Over 100 PB data generated per day

About CMSoft
China Mobile Suzhou Software Technology Co., Ltd /China Mobile Suzhou Research Center.

Specialized subsidiary of China Mobile.

CMSoft focus on cloud computing ,big data and IT support related software services.

01 HBase on China Mobile

BC-Hadoop Architecture

Spark

Tensor
Flow

BigDL

Hive

Tez/
LLAP

Spark
SQL

HBase

Presto Phoenix

Pulsar

Spark
Streaming

Flink
Storm

/JStorm

Kafka

HDFS BookKeeper

Flume

Processing

Storage

Data
Collection

AI Analyze & Query Streaming

BC-HControl

YARN

ZooKeeper

Kerberos

Ranger

Manager
& Security

High throughput Real Time

HTunnel

HBase Scales

1. Nodes：6000+ nodes

2. Clusters：100+ clusters，largest cluster with 600+ nodes

3. Data：tens of PBs，max table with 1.6 PB & 20000+Regions

4. Peak QPS: 30 millions rows/second with about 300 nodes

HBase Timeline

2.1.2
RSG/MOB/hbck2

New Assignment Manager
more Read/Write path offheap

more permission support
ARM support

PFGA/ASIC Accelerated
Compression improve

0.9.x 1.0.0 1.2.6

new api

lots of fix
POWER Server support

1.1.3

stable and bug fix
quota

Id/key authentication
Sampling auto-split

~2014 2015 2016.3 2017.9 2019

stable and bug fix
Java 8

Storage Policy support
SSD Accelerated
Phoenix support
Bulkload improve

SQL on HBase
Secondary Index

Application Scenarios

Consumption
Details

DPI
Data

Log/Monitor
Data

Location
Data

Small
Pictures

User Profile Web Pages Marketing ..

HBase
API

Phoenix Spark Hive Flink Storm MR/Bulkload Kylin ..

BC-HBase

02 Write Path Improve

Write path improve

1. Bulkload with pre-split table by sampling

2. Bulkload HFile Data locality

3. Compression data write path improve

4. SSD Accelerated

Bulkload data skew problem

bulkload steps:
•Map: split HDFS Data to many splits,one map handle one split
•Reduce : task partition by table region startKeys，one reduce task create one region’s data
•doBulkload :move the HFile to region dir and update the HRegion HFile list

map

HDFS Reduce

shuffle

HDFS
(HFile) doBulkLoad RS1 Region1

load hfiles

Move HFile to Region PathPartition by Region

map

map

map 。。。

Bulkload data problem

• table only one region by default
•data skew case poor performance
•hard to pre-split table or need to change the key to rowkey
•application need to change the code to match the new key(rowkey)
•why we need change the application sql or code ?

ID IN OTHERS ROWKEY IN HBase BEFORE AFTER

139****1234 4321****931 USERID=139****1234 USERID=4321****931

Bulkload data skew improve

bulkload steps:
•Map: split HDFS Data to many splits,one map handle one split
•data smapling and pre-split by smapling data ,no need change the application code or sql any more!
•Reduce : task partition by table region startKeys，one reduce task create one region’s HFile data
•doBulkload :move the HFile to region dir and update the HRegion HFile list

HDFS

shuffle

HDFS
(HFile) doBulkLoad

RS1load hfiles

Move HFile to Region Pathpartition by regions

map/
sampling

Reduce

Reduce

Reduce

Reduce

Reduce

RS1

RS1

Region1

Region2

Region3

Region4

Region5

map/
sampling

map/
sampling

map/
sampling

Bulkload HFile data locality

bulkload HFile Data locality Problem:
•Bulkload HFile data locality is by reduce task ,not by the RegionServer of the Region
•Bulkload HFile data locality too low,more network traffic with read/compaction

Improve:
•Bulkload Reduce task create one replica of the HFile on the RegionServer of the Region

Compress table problem

•Money is good : compression is a good choice to save the storage cost
•But flush MemStore to HFile with compression can reduce performance and cost more cpu
•bulkload to compression table slow than none-compression table also
•Life is short : the small HFiles by flush or bulkload will be merged by compaction

LSM Tree really always need compression???

HFile

flush bulkload

HFile

HFile

HFile

Compcation

Compression

Compreesion

Compress table improve

HOW
• Flush and bulkload HFile use none compression type : write path with no compression cost at all
• Compreesion just happened in compaction

Improve:
•Access first small hfiles before compaction is fast same as none compression
•Compcation will merge small hfiles to big hfiles with compression finally
•First Compaction the small HFiles more faster with no decompression cost
•also works for DATA_BLOCK_ENCODING

SSD Accelerated with write path

backgroup:
•Node :12*6TB HDD + 1*1.6TB PCIe SSD
•HDD:SSD =45:1
•How to use ssd more effective ?

Improve:
•Backport HSM to our 1.2.6 Version
•WAL on ALL_SSD First : hbase.wal.storage.policy=ALL_SSD
•HFile first created by bulkload or flush on ALL_SSD but table storage type is HOT(HDD)
•ALL user write path happened in SSD,more faster than HDD
•Small HFiles before compaction in SSD is good for reading and compaction

Storage Policy

•hot or import table data in ALL_SSD or ONE_SSD
•SSD table region should keep more HFiles than HDD before minor compaction
• too much compaction can reduce the ssd life
•SSD random read is far faster than hdd

•ONE_SSD bug found: HDFS-14512

https://issues.apache.org/jira/browse/HDFS-14512

SSD and Compression

HFile

put bulkload

HFile

HFile

HFile

HFile

HFile

Compcation

wal

SSD

HDD

NONE Compression SNAPPY/GZ/ZSTD

Jira and Config

Jira
⚫HBASE-12596（bulkload needs to follow locality）
⚫HBASE-21810(bulkload support set hfile compression on client）
⚫HBASE-6572(Tiered HFile storage ）
⚫HBASE-20105(Allow flushes to target SSD storage）
⚫HDFS-14512(ONE_SSD policy will be violated while write data with

DistributedFileSystem.create(....favoredNodes)
Config
hbase.wal.storage.policy=ALL_SSD
create ‘test’, {NAME => ‘f', CONFIGURATION => {‘hbase.hstore.flush.storagepolicy' => 'ALL_SSD’},
COMPRESSION => 'NONE', METADATA => {'COMPRESSION_COMPACT' => 'GZ'}}
Bulkload : -Dhbase.hstore.block.storage.policy=ALL_SSD -
Dhbase.mapreduce.hfileoutputformat.compression=none

https://issues.apache.org/jira/browse/HBASE-12596
https://issues.apache.org/jira/browse/HBASE-21810
https://issues.apache.org/jira/browse/HBASE-6572
https://issues.apache.org/jira/browse/HBASE-20105
https://issues.apache.org/jira/browse/HDFS-14512

03 Others

Replication

Backgroup
•replication will happened in two different data center
•user use bulkload not put api
•bandwidth limit
•RegionServer failed restart when add peer config cluster key error

Improve:
•Support HFile Bulkload Replication
•support set bulkload HFile compression ,reduce the HFile transmission bandwidth from two data center
•bug fix

Replication Related Jira

⚫HBASE-13153(Bulk Loaded HFile Replication）
⚫HBASE-21810(bulkload support set hfile compression on client）
⚫HBASE-15769(Perform validation on cluster key for add_peer）

https://issues.apache.org/jira/browse/HBASE-13153
https://issues.apache.org/jira/browse/HBASE-21810
https://issues.apache.org/jira/browse/HBASE-15769

Multi Tenant

• Isolation: Slider vs RegionServerGroup

RegionServerGroup Slider

Isolation Physical isolation Base on YARN
(vcores and memory)

Use Case online service/import service offline or less import service

Manager less clusters
easy to manager

many clusters
hard to manager

TIPS:
create a group to hanlder meta table

Multi Tenant

HBase on Slider

Multi Tenant

•RegionServerGroup

Multi Tenant

•qps and bandwith quota
set_quota TYPE => THROTTLE, USER => 'u1', LIMIT => '10M/sec’

set_quota TYPE => THROTTLE, USER => 'u1', LIMIT => ‘10000req/sec’

set_quota TYPE => THROTTLE, NAMESPACE => 'ns1', LIMIT => '10000req/sec'

Authorization & Authentication

1. Authorization
1. auth base on Ranger
2. orginal just support: admin/create/read/write
3. more permission support :alter,drop,delete,modify,deletecolumn...

2. Authentication
1. White List base on Zookeeper
2. Use Kerberos or id/key authorization support
3. BCID : id/key authorization ,simple and effective

Import config

RPC

handler : hbase.regionserver.handler.count

queue : separation of read/write

Read
1. BucketCache offheap
2. HDFS Short-Circuit Read
3. Hedged Read enable

Write
1. Bulkload
2. Multi wal
3. MSLAB ENABLE
4. blockingStoreFiles

Import config

Compaction
1. disable major compact, execute it offpeak time

1. hbase.hregion.majorcompaction=0

2. Control the hfiles number : hbase.hstore.compaction.min/max 12/15
3. Control the hfiles number : hbase.hstore.compaction.max.size/min.size 5G/256M
4. set compaction threads : hbase.regionserver.thread.compaction.small/large 8/8

Loadbalance & SplitPolicy
1. SimpleLoadBalancer
2. ConstantSizeRegionSplitPolicy

Compaction tuning case

Import things-Schema Designs

1. Pre-split table

2. Rowkey design :Reversing/Hashing/Slating , such as reverse(phone_number)

3. SplitPolicy: ConstantSizeRegionSplitPolicy

4. Region Size : 10-50G

5. MAX_FILESIZE should larger than region size

6. Consider use Data Block Encoding when a row has many columns,but not use Prefix Tree

7. keep column family and qualifier short

8. Don’t put empty column

Import things-Schema Designs

Keep table size not too big still import

1. n+1 life data can fast drop table instead of compcation by TTL

2. Compaction can be faster : compaction just happened in current table , history is cold

3. Bulkload can be faster : one region one reduce,less regions means less reduce

4. Modify table can be faster : such as set compression gz and execute major_compact

5. RegionServer can handle more regions

6. Storage Policy can be used more flexible

Tools

1. Canary & hbck : check the rs/table/region status

2. gc log enable & /var/log/messages* : “Detected pause in JVM or host machine”
1. hard/soft lockup, CPU#16 stuck for 67s!
2. full gc

3. netstat/lsof : many tcp close_wait, such as HBASE-9393

4. jstack/jmap/gceasy... : why hbase stuck

5. Data migration : distcp+hbck /snapshot

6. Slow log: responseTooSlow/ TooLarge

7. Monitor
1. HControl & Grafana & HMaster UI
2. Regions/RPC/HFiles/Compaction/RIT/ProcessTime/Lantencies/Throughput/GC/Byte_in/out/ Locality/SlowOperation

04 Future

Future work

HBase on Colud
1. HBase service on China Mobile’s Cloud
2. HBase on K8S
3. Separation of compute and storage
4. FileSystem with Cloud storage

HBase on modern hardware
1. SSD : Compaction policy base on SSD
2. Persistent Memory : wal /bucket cache,flush/bulkload HFile
3. RDMA : RoCE network support

Intelligent Operation and Maintenance System

Thanks！

