
Presto Training Series, Session 1:
Using Advanced SQL Features In Presto
Try Presto: www.prestosql.io

David Phillips and Manfred Moser

29 July 2020

Today’s Speakers

2

Manfred Moser
Developer, author,
and trainer at Starburst

Manfred is an open source developer and

advocate. He is an Apache Maven

committer, co-author of the book Presto:

The Definitive Guide, and a seasoned

trainer and conference presenter. He has

trained over 20,000 developers for

companies such as Walmart Labs,

Sonatype, and Telus.

David Phillips
Co-creator of Presto and
CTO at Starburst

David is a co-creator of Presto,

co-founder of the Presto Software

Foundation, and CTO at Starburst.

Prior to Starburst, David was a

software engineer at Facebook, and

held senior engineering positions at

Proofpoint, Ning and Adknowledge.

Agenda

3

• Presto overview / review

• Using advanced SQL features in Presto

•General SQL features

•Using JSON

•Advanced aggregation techniques

• Five minute break

•Array and map functions

•Window functions

• Q&A

Questions

4

● Ask any time

● Use the meeting Questions feature

● Manfred screens, collects and interjects

● Dedicated Q&A in break and at end

Some advice for attendees

• This is a fast-paced overview – don't try to follow along during class

• Instead focus and pay attention – this is advanced SQL

• Use the demo video after class to setup Presto and CLI locally

• Learn at your own pace

• Use video recording and slides from class as reference to learn more

• Play with the TPC-H data sets

• Apply skills for your own use case

5

Presto Overview

… probably just a recap for you

6

What is Presto?

7

Open source project

● Very active, large community
● User driven development
● Huge variety of users
● Prestosql.io

High performance ANSI SQL engine

• SQL support for any connected
data source - SQL-on-anything

• Cost-based query optimizer
• Proven horizontal scalability

Presto everywhere

• No cloud vendor lock-in
• No storage engine vendor lock-in
• No Hadoop distro vendor lock-in
• No database lock in

Separation of compute and storage

• Scale query processing and data
sources independently

• Query storage directly
• No ETL or data integration

necessary

Why use Presto?

● High performance query

processing

● Low barrier of entry for users

● Massive scalabilty

● High concurrency

● Direct access to storage

● No more data silos,

departmental copies

● Query data with the existing

skills and tools - SQL + BI tools

● Query any data source

● Move data

● Create optionality

Fastest time-to-insight Lower cost Avoid data lock in

● Reduced need to copy

and move data

● Avoid complex data processing

● Scale storage and compute

independently

● Only run computes when

processing queries

● One data consumption layer

8

General SQL Features

9

Format function
VALUES format('pi = %.5f', pi()),

 format('agent %03d', 7),

 format('$%,.2f', 1234567.89),

 format('%-7s,%7s', 'hello', 'world'),

 format('%2$s %3$s %1$s', 'a', 'b', 'c'),

 format('%1$tA, %1$tB %1$te, %1$tY', date '2006-07-04');

 pi = 3.14159

 agent 007

 $1,234,567.89

 hello , world

 b c a

 Tuesday, July 4, 2006

Simple case expressions
SELECT n,

 CASE n

 WHEN 1 THEN 'one'

 WHEN 2 THEN 'two'

 ELSE 'many'

 END AS name

FROM (VALUES 1, 2, 3, 4) AS t (n);

 n | name

---+------

 1 | one

 2 | two

 3 | many

 4 | many

Searched case expressions
SELECT n,

 CASE

 WHEN n = 1 THEN 'aaa'

 WHEN n IN (2, 3) THEN 'bbb'

 ELSE 'ccc'

 END AS name

FROM (VALUES 1, 2, 3, 4) AS t (n);

 n | name

---+------

 1 | aaa

 2 | bbb

 3 | bbb

 4 | ccc

IF expression
SELECT format('I have %s cat%s.', n,

 IF(n = 1, '', 's')) AS text

FROM (VALUES 0, 1, 2, 3) AS t (n);

 text

 I have 0 cats.

 I have 1 cat.

 I have 2 cats.

 I have 3 cats.

TRY expression
SELECT try(8 / 0) div_zero,

 try(cast('abc' AS integer)) not_integer,

 try(2000000000 + 2000000000) overflow;

 div_zero | not_integer | overflow

----------+-------------+----------

 NULL | NULL | NULL

TRY avoids these failures:

Query failed: Division by zero

Query failed: Cannot cast 'abc' to INT

Query failed: integer addition overflow: 2000000000 + 2000000000

Lambda expressions overview

Lambda expression with one input:

x -> x + 8

Lambda expression with two inputs:

(x, y) -> x + y

Using JSON

16

JSON data type
SELECT

 json_parse('null') j_null,

 json_parse('true') bool,

 json_parse('"hello"') string,

 json_parse('123.45') number,

 json_parse('[1, 3, 5, 9]') array,

 json_parse('["hello", 123, {"xyz": 99, "abc": false}]') mixed;

 j_null | bool | string | number | array | mixed

--------+------+---------+--------+-----------+--------------------------------------

 null | true | "hello" | 123.45 | [1,3,5,9] | ["hello",123,{"abc":false,"xyz":99}]

Extraction using JSONPath
SELECT json_extract(v, '$.languages') AS languages,

 json_extract(v, '$.languages[0].name') AS name_json,

 json_extract_scalar(v, '$.languages[0].name') AS name_scalar

FROM (VALUES JSON '

 {"languages": [{"name": "Java"}, {"name": "Python"}]}

') AS t (v);

 languages | name_json | name_scalar

-------------------------------------+-----------+-------------

 [{"name":"Java"},{"name":"Python"}] | "Java" | Java

Casting from JSON
SELECT cast(v AS map(varchar,array(map(varchar,varchar))))

FROM (VALUES JSON '

 {"languages": [{"name": "Java"}, {"name": "Python"}]}

') AS t (v);

 _col0

--

 {languages=[{name=Java}, {name=Python}]}

Partial casting from JSON
SELECT cast(v AS map(varchar,array(map(varchar,json))))

FROM (VALUES JSON '

 {"languages":

 [{"id": 123, "name": "Java", "data": [88,99]},

 {"id": 456, "name": "Python"}]}

') AS t (v);

 _col0

--

 {languages=[{data=[88,99], name="Java", id=123}, {name="Python", id=456}]}

Formatting as JSON
SELECT json_format(JSON '[1, 2, 3]') AS array,

 json_format(JSON '{"xyz": 99, "abc": false}') AS map;

 array | map

---------+------------------------

 [1,2,3] | {"abc":false,"xyz":99}

Advanced Aggregation Techniques

22

Counting distinct items

How many unique customers do we have?

SELECT count(DISTINCT custkey) AS customers

FROM orders;

 customers

 99996

This gives an exact answer, but is slow and memory intensive.

Counting distinct items

Approximately how many unique customers do we have?

SELECT approx_distinct(custkey) AS customers

FROM orders;

 customers

 101655

This example has an error of 1.66%.

Counting distinct items

From the approx_distinct() documentation:

This function should produce a standard error of 2.3%, which is the standard
deviation of the (approximately normal) error distribution over all possible sets. It
does not guarantee an upper bound on the error for any specific input set.

The function uses the HyperLogLog algorithm to approximate the number of distinct
items. The error depends on the unique values, not how many times they appear in the
input. Both of these produce the same error:

● approx_distinct(x)
● approx_distinct(DISTINCT x)

Approximate percentiles

What is the order price at the 50th percentile?

SELECT round(avg(price)) AS avg,

 approx_percentile(price, 0.5) AS pct

FROM (

 SELECT cast(round(totalprice) AS bigint) AS price

 FROM orders

);

 avg | pct

----------+--------

 151220.0 | 144767

Approximate percentiles

What are the order prices at the 10th, 20th, 50th, 90th, and 99th percentiles?

SELECT approx_percentile(price, array[0.1, 0.2, 0.5, 0.9, 0.99]) AS pct

FROM (

 SELECT cast(round(totalprice) AS bigint) AS price

 FROM orders

);

 pct

--

 [39039, 65535, 144767, 274431, 366591]

Associated max value

Find the clerk who has the most expensive order:

SELECT max_by(clerk, totalprice) clerk,

 max(totalprice) price

FROM orders;

 clerk | price

-----------------+-----------

 Clerk#000000040 | 555285.16

Associated max value using a row type

Find the clerk who has the most expensive order:

SELECT max(cast(row(totalprice, clerk) AS

 row(price double, clerk varchar))).*

FROM orders;

 price | clerk

-----------+-----------------

 555285.16 | Clerk#000000040

Associated max values

Find the clerks who have the most expensive orders:

 SELECT max_by(clerk, totalprice, 3) clerks

 FROM orders;

 clerks

 [Clerk#000000040, Clerk#000000230, Clerk#000000699]

Pivoting with conditional counting

Order counts by order priority, as separate columns:

SELECT

 count_if(orderpriority = '1-URGENT') AS urgent,

 count_if(orderpriority = '2-HIGH') AS high,

 count_if(orderpriority = '3-MEDIUM') AS medium,

 count_if(orderpriority = '4-NOT SPECIFIED') AS not_specified,

 count_if(orderpriority = '5-LOW') AS low

FROM orders;

 urgent | high | medium | not_specified | low

--------+--------+--------+---------------+--------

 300343 | 300091 | 298723 | 300254 | 300589

Pivoting with filtering

Order counts by order priority, as separate columns:

SELECT

 count(*) FILTER (WHERE orderpriority = '1-URGENT') AS urgent,

 count(*) FILTER (WHERE orderpriority = '2-HIGH') AS high,

 count(*) FILTER (WHERE orderpriority = '3-MEDIUM') AS medium,

 count(*) FILTER (WHERE orderpriority = '4-NOT SPECIFIED') AS not_specified,

 count(*) FILTER (WHERE orderpriority = '5-LOW') AS low

FROM orders;

 urgent | high | medium | not_specified | low

--------+--------+--------+---------------+--------

 300343 | 300091 | 298723 | 300254 | 300589

Pivoting averages

Total order price by order priority, as separate columns:

SELECT

 avg(totalprice) FILTER (WHERE orderpriority = '1-URGENT') AS urgent,

 avg(totalprice) FILTER (WHERE orderpriority = '2-HIGH') AS high,

 avg(totalprice) FILTER (WHERE orderpriority = '3-MEDIUM') AS medium,

 avg(totalprice) FILTER (WHERE orderpriority = '4-NOT SPECIFIED') AS not_specified,

 avg(totalprice) FILTER (WHERE orderpriority = '5-LOW') AS low

FROM orders;

 urgent | high | medium | not_specified | low

-----------+-----------+-----------+---------------+-----------

 151222.87 | 151553.28 | 151155.45 | 150792.44 | 151373.33

Aggregating a complex expression

What if we charge a premium based on order priority?

SELECT avg(totalprice *

 CASE

 WHEN orderpriority = '1-URGENT' THEN 1.10

 WHEN orderpriority = '2-HIGH' THEN 1.05

 ELSE 1.0

 END) / avg(totalprice) AS premium

FROM orders;

 premium

 1.03005

Aggregating into an array

Build an array from region names, in descending order:

SELECT array_agg(name ORDER BY name DESC) names

FROM region;

 names

--

 [MIDDLE EAST, EUROPE, ASIA, AMERICA, AFRICA]

Aggregating using a lambda

Compute the product of the values in the group:

SELECT name,

 reduce_agg(value, 1,

 (a, b) -> a * b,

 (a, b) -> a * b) AS product

FROM (VALUES ('x', 1), ('x', 3), ('x', 5),

 ('y', 2), ('y', 4), ('y', 6)) AS t (name, value)

GROUP BY name;

 name | product

------+---------

 x | 15

 y | 48

Order-insensitive checksums

Compare data between tables by computing a checksum:

SELECT checksum(orderkey) AS check_orderkey,

 checksum(row(custkey, orderstatus, totalprice)) AS check_multiple

FROM orders;

 check_orderkey | check_multiple

-------------------------+-------------------------

 e8 9a ce bd 9a 26 30 54 | b3 e1 57 6b 07 28 a0 6f

ROLLUP with single
SELECT orderpriority,

 count(*) AS orders

FROM orders

GROUP BY ROLLUP(orderpriority)

ORDER BY orderpriority;

 orderpriority | orders

-----------------+---------

 1-URGENT | 300343

 2-HIGH | 300091

 3-MEDIUM | 298723

 4-NOT SPECIFIED | 300254

 5-LOW | 300589

 NULL | 1500000

ROLLUP with multiple
SELECT linestatus, returnflag,

 count(*) AS items

FROM lineitem

GROUP BY ROLLUP(linestatus, returnflag)

ORDER BY linestatus, returnflag;

 linestatus | returnflag | items

------------+------------+---------

 F | A | 1478493

 F | N | 38854

 F | R | 1478870

 F | NULL | 2996217

 O | N | 3004998

 O | NULL | 3004998

 NULL | NULL | 6001215

CUBE
SELECT linestatus, returnflag,

 count(*) AS items

FROM lineitem

GROUP BY CUBE(linestatus, returnflag)

ORDER BY linestatus, returnflag;

 linestatus | returnflag | items

------------+------------+---------

 F | A | 1478493

 F | N | 38854

 F | R | 1478870

 F | NULL | 2996217

 O | N | 3004998

 O | NULL | 3004998

 NULL | A | 1478493

 NULL | N | 3043852

 NULL | R | 1478870

 NULL | NULL | 6001215

GROUPING SETS
SELECT linestatus, returnflag,

 count(*) AS items

FROM lineitem

GROUP BY GROUPING SETS (

 (linestatus),

 (returnflag),

 (linestatus, returnflag),

 ()
)

ORDER BY linestatus, returnflag;

 linestatus | returnflag | items

------------+------------+---------

 F | A | 1478493

 F | N | 38854

 F | R | 1478870

 F | NULL | 2996217

 O | N | 3004998

 O | NULL | 3004998

 NULL | A | 1478493

 NULL | N | 3043852

 NULL | R | 1478870

 NULL | NULL | 6001215

5 minute break

And if you stick around:

● Browse prestosql.io
● Join us on Slack
● Submit questions

Array and Map Functions

43

Creating arrays
SELECT ARRAY[4, 5, 6] AS integers,

 ARRAY['hello', 'world'] AS varchars;

 integers | varchars

-----------+----------------

 [4, 5, 6] | [hello, world]

Accessing array elements
SELECT a[2] AS second1,

 element_at(a, 2) AS second2,

 element_at(a, -2) AS second_from_last,

 element_at(a, 99) AS bad

FROM (VALUES ARRAY[4, 5, 6, 7, 8]) AS t (a);

 second1 | second2 | second_from_last | bad

---------+---------+------------------+------

 5 | 5 | 7 | NULL

Accessing an invalid subscript with [] fails:

Query failed: Array subscript must be less than or equal to array length: 8 > 5

Query failed: Array subscript is negative: -2

Sorting arrays
SELECT array_sort(ARRAY['a', 'xyz', 'bb', 'abc', 'z', 'b'],

 (x, y) -> CASE

 WHEN length(x) < length(y) THEN -1

 WHEN length(x) > length(y) THEN 1

 ELSE 0

 END) AS sorted;

 sorted

 [a, z, b, bb, xyz, abc]

Matching elements

Do any, all, or none of the elements equal 8?

SELECT a,

 any_match(a, e -> e = 8) AS any,

 all_match(a, e -> e = 8) AS all,

 none_match(a, e -> e = 8) AS none

FROM (VALUES ARRAY[4, 5, 6, 7, 8]) AS t (a);

 a | any | all | none

-----------------+------+-------+-------

 [4, 5, 6, 7, 8] | true | false | false

Filtering elements
SELECT a,

 filter(a, x -> x > 0) AS positive,

 filter(a, x -> x IS NOT NULL) AS non_null

FROM (VALUES ARRAY[5, -6, NULL, 7]) AS t (a);

 a | positive | non_null

------------------+----------+------------

 [5, -6, NULL, 7] | [5, 7] | [5, -6, 7]

Transforming elements
SELECT a,

 transform(a, x -> abs(x)) AS positive,

 transform(a, x -> x * x) AS squared

FROM (VALUES ARRAY[5, -6, NULL, 7]) AS t (a);

 a | positive | squared

------------------+-----------------+--------------------

 [5, -6, NULL, 7] | [5, 6, NULL, 7] | [25, 36, NULL, 49]

Converting arrays to strings
SELECT array_join(sequence(3, 7), '/') AS joined;

 joined

 3/4/5/6/7

SELECT a,

 array_join(transform(a, e -> format('%,d', e)), ' / ') AS value

FROM (VALUES ARRAY[12345678, 987654321]) AS t (a);

 a | value

-----------------------+--------------------------

 [12345678, 987654321] | 12,345,678 / 987,654,321

Computing array product
SELECT a,

 reduce(a, 1,

 (a, b) -> a * b,

 x -> x) AS product

FROM (VALUES ARRAY[1, 2, 3, 4, 5]) AS t (a);

 a | product

-----------------+---------

 [1, 2, 3, 4, 5] | 120

Unnesting an array
SELECT name

FROM (

 VALUES ARRAY['cat', 'dog', 'mouse']

) AS t (a)

CROSS JOIN UNNEST(a) AS x (name);

 name

 cat

 dog

 mouse

Unnesting an array with ordinality
SELECT id, name

FROM (

 VALUES ARRAY['cat', 'dog', 'mouse']

) AS t (a)

CROSS JOIN UNNEST(a) WITH ORDINALITY AS x (name, id);

 id | name

----+-------

 1 | cat

 2 | dog

 3 | mouse

Creating maps

Create a map from arrays of keys and values:

SELECT map(ARRAY['x', 'y'], ARRAY[123, 456]);

Create a map from an array of entry rows:

SELECT map_from_entries(ARRAY[('x', 123), ('y', 456)]);

 _col0

 {x=123, y=456}

Accessing map elements
SELECT m,

 m['xyz'] AS xyz,

 element_at(m, 'abc') AS abc,

 element_at(m, 'bad') AS missing

FROM (VALUES map_from_entries(ARRAY[('abc', 123), ('xyz', 456)])) AS t (m);

 m | xyz | abc | missing

--------------------+-----+-----+---------

 {abc=123, xyz=456} | 456 | 123 | NULL

Accessing an invalid key with [] fails:

Query failed: Key not present in map: bad

Unnesting a map
SELECT key, value

FROM (

 VALUES map_from_entries(ARRAY[('abc', 123), ('xyz', 456)])

) AS t (m)

CROSS JOIN UNNEST(m) AS x (key, value);

 key | value

-----+-------

 abc | 123

 xyz | 456

Window Functions

57

Window function overview

Window functions run across rows of the result. Processing order:

1. FROM and JOINs
2. WHERE
3. GROUP BY
4. HAVING
5. Window functions
6. SELECT
7. DISTINCT
8. ORDER BY
9. LIMIT

Row numbering

Assign each region a unique number, in name order:

SELECT name,

 row_number() OVER (ORDER BY name) AS id

FROM region

ORDER BY name;

 name | id

-------------+----

 AFRICA | 1

 AMERICA | 2

 ASIA | 3

 EUROPE | 4

 MIDDLE EAST | 5

Row numbering order

Assign each region a unique number, in descending name order:

SELECT name,

 row_number() OVER (ORDER BY name DESC) AS id

FROM region

ORDER BY name;

 name | id

-------------+----

 AFRICA | 5

 AMERICA | 4

 ASIA | 3

 EUROPE | 2

 MIDDLE EAST | 1

Row numbering with limit

Assign each region a number, in descending name order, limited to three rows:

SELECT name,

 row_number() OVER (ORDER BY name DESC) AS row_number

FROM region

ORDER BY name

LIMIT 3;

 name | id

-------------+----

 AFRICA | 5

 AMERICA | 4

 ASIA | 3

Rank

Assign a rank to each region, in descending name order:

SELECT name,

 rank() OVER (ORDER BY name DESC) AS rank

FROM region

ORDER BY name;

 name | rank

-------------+------

 AFRICA | 5

 AMERICA | 4

 ASIA | 3

 EUROPE | 2

 MIDDLE EAST | 1

Rank with ties

Assign a rank to each region, based on first letter of name:

SELECT name,

 rank() OVER (ORDER BY substr(name, 1, 1)) AS rank

FROM region

ORDER BY name;

 name | rank

-------------+------

 AFRICA | 1

 AMERICA | 1

 ASIA | 1

 EUROPE | 4

 MIDDLE EAST | 5

Dense rank with ties

Assign a rank to each region, based on first letter of name:

SELECT name,

 dense_rank() OVER (ORDER BY substr(name, 1, 1)) AS rank

FROM region

ORDER BY name;

 name | rank

-------------+------

 AFRICA | 1

 AMERICA | 1

 ASIA | 1

 EUROPE | 2

 MIDDLE EAST | 3

Ranking without ordering

Assign a rank to each region:

SELECT name,

 rank() OVER (ORDER BY null) AS x,

 rank() OVER () AS y

FROM region

ORDER BY name;

 name | x | y

-------------+---+---

 AFRICA | 1 | 1

 AMERICA | 1 | 1

 ASIA | 1 | 1

 EUROPE | 1 | 1

 MIDDLE EAST | 1 | 1

Row numbering without ordering

Assign a rank to each region:

SELECT name,

 row_number() OVER (ORDER BY null) AS x,

 row_number() OVER () AS y

FROM region

ORDER BY name;

 name | x | y

-------------+---+---

 AFRICA | 1 | 1

 AMERICA | 2 | 2

 ASIA | 3 | 3

 EUROPE | 4 | 4

 MIDDLE EAST | 5 | 5

Assigning rows to buckets

Assign rows into three buckets, in name order:

SELECT name,

 ntile(3) OVER (ORDER BY name) AS bucket

FROM region

ORDER BY name;

 name | bucket

-------------+--------

 AFRICA | 1

 AMERICA | 1

 ASIA | 2

 EUROPE | 2

 MIDDLE EAST | 3

Percentage ranking

Percentage rank of rows, in name order:

SELECT name,

 percent_rank() OVER (ORDER BY name) AS percent

FROM region

ORDER BY name;

 name | percent

-------------+---------

 AFRICA | 0.0

 AMERICA | 0.25

 ASIA | 0.5

 EUROPE | 0.75

 MIDDLE EAST | 1.0

Partitioning

Divide regions by first letter of name, then assign ranks:

SELECT name,

 rank() OVER (PARTITION BY substr(name, 1, 1) ORDER BY name) AS rank

FROM region

ORDER BY name;

 name | rank

-------------+------

 AFRICA | 1

 AMERICA | 2

 ASIA | 3

 EUROPE | 1

 MIDDLE EAST | 1

Partitioning on the same value

Assign a rank to each region:

SELECT name,

 rank() OVER (PARTITION BY null ORDER BY name) AS x,

 rank() OVER (ORDER BY name) AS y

FROM region

ORDER BY name;

 name | x | y

-------------+---+---

 AFRICA | 1 | 1

 AMERICA | 2 | 2

 ASIA | 3 | 3

 EUROPE | 4 | 4

 MIDDLE EAST | 5 | 5

Accessing leading and trailing rows

Access a value in the row behind and ahead of the current row:

SELECT name,

 lag(name) OVER (ORDER BY name) AS lag,

 lead(name) OVER (ORDER BY name) AS lead

FROM region

ORDER BY name;

 name | lag | lead

-------------+---------+-------------

 AFRICA | NULL | AMERICA

 AMERICA | AFRICA | ASIA

 ASIA | AMERICA | EUROPE

 EUROPE | ASIA | MIDDLE EAST

 MIDDLE EAST | EUROPE | NULL

Accessing leading and trailing rows

Access a value in the row behind and ahead of the current row, with default:

SELECT name,

 lag(name, 1, 'none') OVER (ORDER BY name) AS lag,

 lead(name, 1, 'none') OVER (ORDER BY name) AS lead

FROM region

ORDER BY name;

 name | lag | lead

-------------+---------+-------------

 AFRICA | none | AMERICA

 AMERICA | AFRICA | ASIA

 ASIA | AMERICA | EUROPE

 EUROPE | ASIA | MIDDLE EAST

 MIDDLE EAST | EUROPE | none

Accessing leading and trailing rows

Access a value two rows back and two rows ahead, with default:

SELECT name,

 lag(name, 2, 'none') OVER (ORDER BY name) AS lag2,

 lead(name, 2, 'none') OVER (ORDER BY name) AS lead2

FROM region

ORDER BY name;

 name | lag2 | lead2

-------------+---------+-------------

 AFRICA | none | ASIA

 AMERICA | none | EUROPE

 ASIA | AFRICA | MIDDLE EAST

 EUROPE | AMERICA | none

 MIDDLE EAST | ASIA | none

Accessing leading and trailing rows with nulls

Access a value in the row behind and ahead of the current row, respecting nulls:

SELECT id, v,

 lag(v) OVER (ORDER BY id) AS lag,

 lead(v) OVER (ORDER BY id) AS lead

FROM (VALUES (1, 'a'), (2, 'b'), (3, null), (4, 'd'), (5, null)) AS t (id, v)

ORDER BY id;

 id | v | lag | lead

----+------+------+------

 1 | a | NULL | b

 2 | b | a | NULL

 3 | NULL | b | d

 4 | d | NULL | NULL

 5 | NULL | d | NULL

Accessing leading and trailing rows without nulls

Access a value in the row behind and ahead of the current row, ignoring nulls:

SELECT id, x,

 lag(x) IGNORE NULLS OVER (ORDER BY id) AS lag,

 lead(x) IGNORE NULLS OVER (ORDER BY id) AS lead

FROM (VALUES (1, 'a'), (2, 'b'), (3, null), (4, 'd'), (5, null)) AS t (id, x)

ORDER BY id;

 id | x | lag | lead

----+------+------+------

 1 | a | NULL | b

 2 | b | a | d

 3 | NULL | b | d

 4 | d | b | NULL

 5 | NULL | d | NULL

Window frames

Each row in a partition has a frame:

• ROWS: physical frame based on an exact
number of rows

• RANGE: logical frame that includes all rows
that are peers within the ordering

Examples:

• RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

• RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

• ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING

• ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

• ROWS BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING

• ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING

Source: https://www.sqlitetutorial.net/sqlite-window-functions/sqlite-window-frame/

https://www.sqlitetutorial.net/sqlite-window-functions/sqlite-window-frame/

Accessing the first value
SELECT name,

 first_value(name) OVER (

 ORDER BY name

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

) AS value

FROM region;

 name | value

-------------+--------

 AFRICA | AFRICA

 AMERICA | AFRICA

 ASIA | AFRICA

 EUROPE | AFRICA

 MIDDLE EAST | AFRICA

Accessing the last value
SELECT name,

 last_value(name) OVER (

 ORDER BY name

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

) AS value

FROM region;

 name | value

-------------+-------------

 AFRICA | MIDDLE EAST

 AMERICA | MIDDLE EAST

 ASIA | MIDDLE EAST

 EUROPE | MIDDLE EAST

 MIDDLE EAST | MIDDLE EAST

Accessing the Nth value
SELECT name,

 nth_value(name, 2) OVER (

 ORDER BY name

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

) AS value

FROM region;

 name | value

-------------+---------

 AFRICA | AMERICA

 AMERICA | AMERICA

 ASIA | AMERICA

 EUROPE | AMERICA

 MIDDLE EAST | AMERICA

Window frame ROWS vs RANGE
SELECT id, v,

 array_agg(v) OVER (ORDER BY id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS rows,

 array_agg(v) OVER (ORDER BY id RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS range,

 array_agg(v) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS rows_tie,

 array_agg(v) OVER (RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS range_tie

FROM (VALUES (1, 'a'), (2, 'b'), (3, 'c'), (3, 'd'), (5, 'e')) AS t (id, v);

 id | v | rows | range | rows_tie | range_tie

----+---+-----------------+-----------------+-----------------+-----------------

 1 | a | [a] | [a] | [a] | [a, b, c, d, e]

 2 | b | [a, b] | [a, b] | [a, b] | [a, b, c, d, e]

 3 | c | [a, b, c] | [a, b, c, d] | [a, b, c] | [a, b, c, d, e]

 3 | d | [a, b, c, d] | [a, b, c, d] | [a, b, c, d] | [a, b, c, d, e]

 5 | e | [a, b, c, d, e] | [a, b, c, d, e] | [a, b, c, d, e] | [a, b, c, d, e]

Rolling and total sum
SELECT v,

 sum(v) OVER (ORDER BY v ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS rolling,

 sum(v) OVER () total

FROM (VALUES 1, 2, 3, 4, 5) AS t (v);

 v | rolling | total

---+---------+-------

 1 | 1 | 15

 2 | 3 | 15

 3 | 6 | 15

 4 | 10 | 15

 5 | 15 | 15

Partition sum
SELECT p, v,

 sum(v) OVER (

 PARTITION BY p ORDER BY v

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sum

FROM (VALUES ('a', 1), ('a', 2), ('a', 3), ('b', 4), ('b', 5), ('b', 6)) AS t (p, v);

 p | v | sum

---+---+-----

 a | 1 | 1

 a | 2 | 3

 a | 3 | 6

 b | 4 | 4

 b | 5 | 9

 b | 6 | 15

Wrapping up

83

Presto Training Series

Join the Presto creators again for more:

• Understanding and Tuning Query Processing with Martin (12 Aug)

• Securing Presto with Dain (26 Aug)

• Configuring and Tuning Presto Performance with Dain (9 Sept)

Presto Summit series

Diverse information about Presto and real world usage

• State of Presto - recording available

• Presto as Query Layer at Zuora - recording available

• Presto Migration at Arm Treasure Data - recording available

• Presto for Analytics at Pinterest - 19 Aug

https://prestosql.io/blog/2020/05/15/state-of-presto.html
https://prestosql.io/blog/2020/06/16/presto-summit-zuora.html
https://prestosql.io/blog/2020/07/06/presto-summit-arm-td.html
https://prestosql.io/blog/2020/07/22/presto-summit-pinterest.html

And finally …

• Learn more from our website and documentation at prestosql.io

• Join us on slack at prestosql.io/slack

• Get a free digital copy of Presto: The Definitive Guide

• Thank you for hanging out with us

• See you next time

https://prestosql.io/
https://prestosql.io/slack
https://prestosql.io/blog/2020/04/11/the-definitive-guide.html

Your question
Our answers …

87

